任务和运动计划在解决严格的顺序操作问题方面取得了重大进展。但是,此类计划公式与反应性执行的控制方法之间存在差距。在本文中,我们提出了一种模型预测控制方法,该方法专门执行一个约束序列,该方法对应于TAMP计划的离散决策顺序。我们将总体控制问题分解为三个子问题(解决顺序航路点,其时序和一个简短的水平路径),每个问题是每个MPC循环中在线求解的一个非线性程序。最终的控制策略可以解释约束的长期相互依存关系,并通过所有约束来反应地计划正时正常的过渡。我们还建议在无法实现当前阶段的运行限制时进行回溯,从而导致一种流利的重新定位行为,这对实验者的扰动和干扰是可靠的。
translated by 谷歌翻译
我们提出了一种从基于隐式对象编码器,神经辐射字段(NERFS)和图神经网络的图像观测值中学习组成多对象动力学模型的方法。由于其强大的3D先验,NERF已成为代表场景的流行选择。但是,大多数NERF方法都在单个场景上进行了训练,以全球模型代表整个场景,从而对新型场景进行概括,其中包含不同数量的对象,具有挑战性。取而代之的是,我们提出了一个以对象为中心的自动编码器框架,该框架将场景的多个视图映射到一组分别表示每个对象的潜在向量。潜在矢量参数化可以从中重建场景的单个nerf。基于那些潜在向量,我们在潜在空间中训练图形神经网络动力学模型,以实现动力学预测的组成性。我们方法的一个关键特征是,潜在向量被迫通过NERF解码器编码3D信息,这使我们能够在学习动力学模型中纳入结构先验,从而使长期预测与多个基线相比更加稳定。模拟和现实世界的实验表明,我们的方法可以建模和学习构图场景的动态,包括刚性和可变形对象。视频:https://dannydriess.github.io/compnerfdyn/
translated by 谷歌翻译
机器人操纵计划是找到一系列机器人配置的问题,该配置涉及与场景中的对象的交互,例如掌握,放置,工具使用等来实现这种相互作用,传统方法需要手工设计的特征和对象表示,它仍然是如何以灵活有效的方式描述与任意对象的这种交互的开放问题。例如,通过3D建模的最新进步启发,例如,NERF,我们提出了一种方法来表示对象作为神经隐式功能,我们可以在其中定义和共同列车交互约束函数。所提出的像素对准表示直接从具有已知相机几何形状的相机图像推断出,当时在整个操纵管道中作为感知组件,同时能够实现连续的机器人操纵计划。
translated by 谷歌翻译
强化学习(RL)在机器人中的应用通常受高数据需求的限制。另一方面,许多机器人场景中容易获得近似模型,使基于模型的方法,如规划数据有效的替代方案。尽管如此,这些方法的性能遭受了模型不精确或错误。从这个意义上讲,RL和基于模型的规划者的各个优势和弱点是。在目前的工作中,我们调查如何将两种方法集成到结合其优势的一个框架中。我们介绍了学习执行(L2E),从而利用近似计划中包含的信息学习有关计划的普遍政策。在我们的机器人操纵实验中,与纯RL,纯规划或基线方法相比,L2E在结合学习和规划的基线方法时表现出增加的性能。
translated by 谷歌翻译
While the capabilities of autonomous systems have been steadily improving in recent years, these systems still struggle to rapidly explore previously unknown environments without the aid of GPS-assisted navigation. The DARPA Subterranean (SubT) Challenge aimed to fast track the development of autonomous exploration systems by evaluating their performance in real-world underground search-and-rescue scenarios. Subterranean environments present a plethora of challenges for robotic systems, such as limited communications, complex topology, visually-degraded sensing, and harsh terrain. The presented solution enables long-term autonomy with minimal human supervision by combining a powerful and independent single-agent autonomy stack, with higher level mission management operating over a flexible mesh network. The autonomy suite deployed on quadruped and wheeled robots was fully independent, freeing the human supervision to loosely supervise the mission and make high-impact strategic decisions. We also discuss lessons learned from fielding our system at the SubT Final Event, relating to vehicle versatility, system adaptability, and re-configurable communications.
translated by 谷歌翻译
As language models (LMs) scale, they develop many novel behaviors, good and bad, exacerbating the need to evaluate how they behave. Prior work creates evaluations with crowdwork (which is time-consuming and expensive) or existing data sources (which are not always available). Here, we automatically generate evaluations with LMs. We explore approaches with varying amounts of human effort, from instructing LMs to write yes/no questions to making complex Winogender schemas with multiple stages of LM-based generation and filtering. Crowdworkers rate the examples as highly relevant and agree with 90-100% of labels, sometimes more so than corresponding human-written datasets. We generate 154 datasets and discover new cases of inverse scaling where LMs get worse with size. Larger LMs repeat back a dialog user's preferred answer ("sycophancy") and express greater desire to pursue concerning goals like resource acquisition and goal preservation. We also find some of the first examples of inverse scaling in RL from Human Feedback (RLHF), where more RLHF makes LMs worse. For example, RLHF makes LMs express stronger political views (on gun rights and immigration) and a greater desire to avoid shut down. Overall, LM-written evaluations are high-quality and let us quickly discover many novel LM behaviors.
translated by 谷歌翻译
As AI systems become more capable, we would like to enlist their help to supervise other AIs. We experiment with methods for training a harmless AI assistant through self-improvement, without any human labels identifying harmful outputs. The only human oversight is provided through a list of rules or principles, and so we refer to the method as 'Constitutional AI'. The process involves both a supervised learning and a reinforcement learning phase. In the supervised phase we sample from an initial model, then generate self-critiques and revisions, and then finetune the original model on revised responses. In the RL phase, we sample from the finetuned model, use a model to evaluate which of the two samples is better, and then train a preference model from this dataset of AI preferences. We then train with RL using the preference model as the reward signal, i.e. we use 'RL from AI Feedback' (RLAIF). As a result we are able to train a harmless but non-evasive AI assistant that engages with harmful queries by explaining its objections to them. Both the SL and RL methods can leverage chain-of-thought style reasoning to improve the human-judged performance and transparency of AI decision making. These methods make it possible to control AI behavior more precisely and with far fewer human labels.
translated by 谷歌翻译
Surgery is the only viable treatment for cataract patients with visual acuity (VA) impairment. Clinically, to assess the necessity of cataract surgery, accurately predicting postoperative VA before surgery by analyzing multi-view optical coherence tomography (OCT) images is crucially needed. Unfortunately, due to complicated fundus conditions, determining postoperative VA remains difficult for medical experts. Deep learning methods for this problem were developed in recent years. Although effective, these methods still face several issues, such as not efficiently exploring potential relations between multi-view OCT images, neglecting the key role of clinical prior knowledge (e.g., preoperative VA value), and using only regression-based metrics which are lacking reference. In this paper, we propose a novel Cross-token Transformer Network (CTT-Net) for postoperative VA prediction by analyzing both the multi-view OCT images and preoperative VA. To effectively fuse multi-view features of OCT images, we develop cross-token attention that could restrict redundant/unnecessary attention flow. Further, we utilize the preoperative VA value to provide more information for postoperative VA prediction and facilitate fusion between views. Moreover, we design an auxiliary classification loss to improve model performance and assess VA recovery more sufficiently, avoiding the limitation by only using the regression metrics. To evaluate CTT-Net, we build a multi-view OCT image dataset collected from our collaborative hospital. A set of extensive experiments validate the effectiveness of our model compared to existing methods in various metrics. Code is available at: https://github.com/wjh892521292/Cataract OCT.
translated by 谷歌翻译
Wireless Sensor Network (WSN) applications reshape the trend of warehouse monitoring systems allowing them to track and locate massive numbers of logistic entities in real-time. To support the tasks, classic Radio Frequency (RF)-based localization approaches (e.g. triangulation and trilateration) confront challenges due to multi-path fading and signal loss in noisy warehouse environment. In this paper, we investigate machine learning methods using a new grid-based WSN platform called Sensor Floor that can overcome the issues. Sensor Floor consists of 345 nodes installed across the floor of our logistic research hall with dual-band RF and Inertial Measurement Unit (IMU) sensors. Our goal is to localize all logistic entities, for this study we use a mobile robot. We record distributed sensing measurements of Received Signal Strength Indicator (RSSI) and IMU values as the dataset and position tracking from Vicon system as the ground truth. The asynchronous collected data is pre-processed and trained using Random Forest and Convolutional Neural Network (CNN). The CNN model with regularization outperforms the Random Forest in terms of localization accuracy with aproximate 15 cm. Moreover, the CNN architecture can be configured flexibly depending on the scenario in the warehouse. The hardware, software and the CNN architecture of the Sensor Floor are open-source under https://github.com/FLW-TUDO/sensorfloor.
translated by 谷歌翻译
Recent development of deep neural networks (DNNs) for tabular learning has largely benefited from the capability of DNNs for automatic feature interaction. However, the heterogeneity nature of tabular features makes such features relatively independent, and developing effective methods to promote tabular feature interaction still remains an open problem. In this paper, we propose a novel Graph Estimator, which automatically estimates the relations among tabular features and builds graphs by assigning edges between related features. Such relation graphs organize independent tabular features into a kind of graph data such that interaction of nodes (tabular features) can be conducted in an orderly fashion. Based on our proposed Graph Estimator, we present a bespoke Transformer network tailored for tabular learning, called T2G-Former, which processes tabular data by performing tabular feature interaction guided by the relation graphs. A specific Cross-level Readout collects salient features predicted by the layers in T2G-Former across different levels, and attains global semantics for final prediction. Comprehensive experiments show that our T2G-Former achieves superior performance among DNNs and is competitive with non-deep Gradient Boosted Decision Tree models.
translated by 谷歌翻译